
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 26. October 2020
Markus Püschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler, Ulysse Schaller

Algorithms & Data Structures Exercise sheet 6 HS 20

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

Submission:OnMonday, 2. November 2020, hand in your solution to your TA before the exercise class
starts. Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus points.

Exercise 6.1 Minimum edit distance: �nding an invariant (1 point).

Let Σ = {a, b, c, . . . , z} denote the alphabet. �e minimum edit distance is equal to the minimal
amount of insertions, deletions and substitutions required to change the string α to the string β. E.g.,
editDistance((t,i,g,e,r), (z,i,e,g,e)) = 3.�e following algorithm takes two stringsα = (α1, . . . , αm) ∈
Σm and β = (β1, . . . , βn) ∈ Σn, withm,n > 1, as input and computes the minimum edit distance.

Algorithm 1 editDistance(α, β)

d← 0(m+1)×(n+1) an (m+ 1)× (n+ 1) matrix of zeros
for i = 1, . . . ,m do

di,0 = i

for j = 1, . . . , n do
d0,j = j

for i = 1, . . . ,m do
for j = 1, . . . , n do

if αi = βj then
c = 0

else
c = 1

di,j = min(di−1,j + 1, di,j−1 + 1, di−1,j−1 + c)
// Your invariant from a) must hold here.

return dm,n

Note that for d we started our indexing from 0 and for α and β from 1.

a) Formulate an invariant INV (i, j) that holds a�er the (i, j)-th iteration of the for loops, i.e., a�er
the computation of di,j in the pseudo code.



Solution: Let α:i = (α1, . . . , αi) and β:j = (β1, . . . , βj). We formulate the following invariant
INV (i, j):

A�er the computation of di,j (which happens in one of the for-loops, except for d0,0 for which it happens
in the initialization), the value of di,j is equal to the minimal edit distance from α:i to β:j .

b) Prove the correctness of the algorithm editDistance by induction over i and j using your inva-
riant.

Hint: You may ignore the exact order of computation and use the following induction hypothesis
of the form: ’INV (i, j) holds for all i, j with i + j ≤ k’. �en, you do an induction step from k to
k + 1.

Solution:

We will show that INV (i, j) holds for all pairs (i, j) ∈ {0, . . . ,m} × {0, . . . , n} (note that we also
cover the cases when i = 0 or j = 0). �e proof is by induction on k := i+ j.

Base case If k = 0 then i = j = 0. In this case, both strings are the empty string, so their edit distance
is zero. We observe that this is what the algorithm sets.

Induction hypothesis Assume, for some 0 ≤ k ≤ m + n, INV (i, j) holds for all 0 ≤ i ≤ m and
0 ≤ j ≤ n with i+ j ≤ k.

Note here that di,j is only computed once. �us, if the invariant INV (i, j) holds at the point in
timewhen di,j is computed, it also holds throughout the remaining computation of the algorithm.

Induction step k → k + 1 Weneed to show something for all i, j with i+j ≤ k+1. For i+j < k+1,
the desired statement is contained in the induction hypothesis, and there is nothing to show. So
the only new case is if i+ j = k + 1. We discriminate two cases. If i = 0, then the �rst string is
the empty string, and the edit distance to a string of length j is obviously exactly j. Similarly, if
j = 0, then the edit distance is exactly i. We observe that this is set correctly in the �rst two for
loops.

In the remaining case, we have i, j ≥ 1. For the strings α:i and β:j , there is some sequence of
optimal edits. We distinguish another three cases, depending onwhat the edit sequence does with
the last characters αi and βj . Either αi is deleted by some edit (�rst case). If it is not deleted, then
it must (possibly a�er some substitution) be matched to some character of β:j in the end. If that
character is not βj , then βj must have been added, since αi is the last character of the start string
(second case). Finally, it might be that αi is matched to βj , possibly a�er substituion (third case).

Case 1: Delete αi In this case the optimal number of edits required is the edit distance from
α:i−1 toβ:j plus one, which is equal to di−1,j+1 by our induction hypothesis.�e hypothesis
is applicable for the index pair (i− 1, j) since (i− 1) + j ≤ k.

Case 2: Add βj In this case the optimal number of edits required is the edit distance from α:i

to β:j−1 plus one, which is equal to di,j−1 + 1 by our induction hypothesis. Again the
hypothesis is applicable for the index pair (i, j − 1) since i+ (j − 1) ≤ k.

Case 3: Substitute If αi = βj , we don’t need to substitute and thus the optimal number of
edits required is the edit distance from α:i−1 to β:j−1, which is equal to di−1,j−1 by our
induction hypothesis. Else, we substitute and thus the optimal number of edits required
is the edit distance from α:i−1 to β:j−1 plus one, which is equal to di−1,j−1 + 1 by our
induction hypothesis. Again the hypothesis is applicable for the index pair (i − 1, j − 1)
since (i− 1) + (j − 1) ≤ k.

2



�eminimal number of edits is achieved by the minimum over these three cases which is exactly
what editDistance does.

�is concludes the induction.

At the end of the execution of editDistance, di,j is equal to the amount of edits required to trans-
form α:i to β:j for all 0 ≤ i ≤ m and 0 ≤ j ≤ n and as a consequence dm,n is the minimum edit
distance.

Exercise 6.2 Introduction to dynamic programming (1 point).

Consider the recurrence
F1 = 1

F2 = 1

F3 = 1

Fi = Fi−1 + Fi−2 + Fi−3.

a) Provide a recursive function (using pseudo code) that computes Fi for i ∈ N.

Solution:

Algorithm 2 F (i)

if i ≤ 3 then
return 1

else
return F (i− 1) + F (i− 2) + F (i− 3)

b) Lower bound the running time of your recursion from a) using Ω notation.

Solution: �e number of operations for a call F (i) is given by the recurrence T (1) = T (2) =
T (3) = 1 and T (i) = T (i− 1) + T (i− 2) + T (i− 3) + c, in which c is a positive constant.

We will show by induction that T (i) ≥ 1
3 · 3

i/3. For i = 1, 2, 3 this is satis�ed since i/3 ≤ 1 for
these values, and thus T (i) = 1 ≥ 1

3 · 3
i/3.

For the inductive step, we bound T (i) from below by the following chain of inequalities

T (i) ≥ T (i− 1) + T (i− 2) + T (i− 3)

IV
≥ 1

3
·
(

3(i−1)/3 + 3(i−2)/3 + 3(i−3)/3
)

≥ 1

3
·
(

3(i−3)/3 + 3(i−3)/3 + 3(i−3)/3
)

=
1

3
· 3i/3.

�us, T (i) ≥ Ω(3i/3).

Remark: With a bit more care, it can be shown by induction that T (i) = Θ(φi), where φ ≈ 1.8393
is the unique positive solution of x3 = x2 + x+ 1.

Edit on Nov. 6:�e proof above is complete, but it doesn’t provide much help for imitating the proof
in similar situations. In particular, it does not contain guidelines on how to �nd a guess for the
inductive statement T (i) ≥ 1

3 · 3
i/3. So here we give some intuitive reasoning on how to �nd a

candidate for such a statement. Note that this is informal reasoning, not part of a proof or of the
solution. So we don’t need to justify our steps.

3



First, it seems plausible that T is monotone, i.e., for j > iwe have T (j) ≥ T (i). �en we can bound

T (i) = T (i− 1) + T (i− 2) + T (i− 3) ≥ 3T (i− 3).

Iterating this formula, we get

T (i) ≥ 3T (i− 3) ≥ 9 · T (i− 6) ≥ . . . ≥ 3k · T (i− 3k).

For k ≈ i/3, we obtain the conjecture T (i) ≥ 3i/3 =: f(i). �is conjecture is not yet correct.
�e inductive step would go through with this conjecture, but it fails for the base cases i = 1, 2, 3.
However, let us look into the inductive step. It is T (i) ≥ 3T (i− 3) ≥ 3f(i− 3) ≥ f(i), so the only
requirement for f is 3f(i − 3) ≥ f(i). �is requirement is still satis�ed if we replace f by c · f ,
essentially because both sides of the inequality 3f(i − 3) ≥ f(i) are linear in f . So the inductive
step would still work if we use the inductive statement T (i) ≥ c · f(i), for a constant c that we can
still choose. Nowwe choose c such that the base cases are also satis�ed, i.e., such that T (1) ≥ cf(1),
T (2) ≥ cf(2), and T (3) ≥ cf(3). One such choice is c = 1/3, and this is used in the solution above.

c) Improve the running time of your algorithm using the memoization. Provide pseudo code of the
improved algorithm and analyze its running time.

Solution:

Algorithm 3 Compute Fi using memoization
memory← i-dimensional array �lled with (−1)s
function F MEM(i)

if memory[i] 6= −1 then . If Fi is already computed.
return memory[i]

if i ≤ 3 then
return 1

else
Fi ← F Mem(i− 1) + F Mem(i− 2) + F Mem(i− 3)
memory[i]← Fi

return Fi

When calling F Mem(i), each Fj for 1 ≤ j ≤ i is computed only once and then stored in memory.
�us the running time of F Mem(i) is O(i).

d) Compute Fi using dynamic programming and state the running time of your algorithm:

Solution:

Dimensions of the DP table: �e DP table is linear, its size is i.

De�nition of the DP table: DP [j] contains Fj for 1 ≤ j ≤ i.

Calculation of an entry: Initialize DP [1], DP [2] and DP [3] to 1.

�e entries with j > 3 are computed by DP [j] = DP [j − 1] +DP [j − 2] +DP [j − 3].

Calculation order: We can calculate the entries of DP from smallest to largest.

Reading the solution: All we have to do is read the value at DP [i].

Running time: Each entry can be computed in time Θ(1), so the running time is Θ(i).

4



Exercise 6.3 Longest ascending subsequence.

�e longest ascending subsequence problem is concerned with �nding a longest subsequence of a given
array A of length n such that the subsequence is sorted in ascending order. �e subsequence does not
have to be contiguous and it may not be unique. For example if A = [1, 5, 4, 2, 8], a longest ascending
subsequence is 1, 5, 8. Other solutions are 1, 4, 8, and 1, 2, 8.

Given is the array:

[19, 3, 7, 1, 4, 15, 18, 16, 14, 6, 5, 10, 12, 19, 13, 17, 20, 8, 14, 11]

Use the dynamic programming algorithm from section 3.2. of the script to �nd the length of a lon-
gest ascending subsequence and the subsequence itself. Provide the intermediate steps, i.e., DP-table
updates, of your computation.

Solution: �e solution is given by a one-dimensional DP table that we update in each round. A�er
round i, the entry DP [j] contains the smallest possible endvalue for an ascending sequence of length
j that only uses the �rst i entries of the array. In each round, we need to update exactly one entry. If
there is no ascending sequence of length j, we mark it by “-” . In order to visualise the algorithm, we
display the table a�er each round. Note that the algorithm does not create a new array in each round,
it just updates the single value that changes

length 1 2 3 4 5 6 7 8 9

round 1 19 - - - - - - - -
round 2 3 - - - - - - - -
round 3 3 7 - - - - - - -
round 4 1 7 - - - - - - -
round 5 1 4 - - - - - - -
round 6 1 4 15 - - - - - -
round 7 1 4 15 18 - - - - -
round 8 1 4 15 16 - - - - -
round 9 1 4 14 16 - - - - -
round 10 1 4 6 16 - - - - -
round 11 1 4 5 16 - - - - -
round 12 1 4 5 10 - - - - -
round 13 1 4 5 10 12 - - - -
round 14 1 4 5 10 12 19 - - -
round 15 1 4 5 10 12 13 - - -
round 16 1 4 5 10 12 13 17 - -
round 17 1 4 5 10 12 13 17 20 -
round 18 1 4 5 8 12 13 17 20 -
round 19 1 4 5 8 12 13 14 20 -
round 20 1 4 5 8 11 13 14 20 -

�e longest subsequence has length 8, since this is the largest length for which there is an entry in the
table a�er the �nal round. To obtain the subsequence itself, we work backwards:�e last entry is 20. To

5



get the second-to-last value, we check out the le� neighbour of 20 in the round in which 20 was entered
(round 17), which is 17. �en we go the le� neighbour of 17 in the round in which it entered the table
(round 16), and obtain 13. Continuing in this fashion, we obtain the sequence 1, 4, 5, 10, 12, 13, 17, 20.

Exercise 6.4 Longest common subsequence.

Given are two arrays, A of length n, and B of length m, we want to �nd the their longest common
subsequence and its length. �e subsequence does not have to be contiguous. For example, if A =
[1, 8, 5, 2, 3, 4] and B = [8, 2, 5, 1, 9, 3], a longest common subsequence is 8, 5, 3 and its length is 3.
Notice that 8, 2, 3 is another longest common subsequence.

Given are the two arrays:
A = [7, 6, 3, 2, 8, 4, 5, 1]

and
B = [3, 9, 10, 8, 7, 1, 2, 6, 4, 5],

Use the dynamic programming algorithm from Section 3.3 of the script to �nd the length of a longest
common subsequence and the subsequence itself. Show all necessary tables and information you used
to obtain the solution.

Solution: As described in the lecture, DP [i, j] denotes the size of the longest common subsequence
between the strings A[1 . . . i] and B[1 . . . j]. Note that we assume that A has indices between 1 and 8,
so A[1 . . . 0] is empty, and similarly for B. �en we get the following DP-table:

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 1 1 1 1

2 0 0 0 0 0 1 1 1 2 2 2

3 0 1 1 1 1 1 1 1 2 2 2

4 0 1 1 1 1 1 1 2 2 2 2

5 0 1 1 1 2 2 2 2 2 2 2

6 0 1 1 1 2 2 2 2 2 3 3

7 0 1 1 1 2 2 2 2 2 3 4

8 0 1 1 1 2 2 3 3 3 3 4

To �nd some longest common subsequence, we create an array S of lengthDP [n,m] and then we start
moving from cell (n,m) of the DP table in the following way:

If we are in cell (i, j) and DP [i− 1, j] = DP [i, j], we move to DP [i− 1, j].

Otherwise, if DP [i, j − 1] = DP [i, j], we move to DP [i, j − 1].

Otherwise, by de�nition ofDP table,DP [i− 1, j − 1] = DP [i, j]− 1 and A[i− 1] = B[j − 1], so we
assign S[DP [i− 1, j − 1]]← A[i− 1] and then we move to DP [i− 1, j − 1].

We stop when i = 0 or j = 0.

Using this procedure we �nd the following longest common subsequence: S = [7, 6, 4, 5].

Exercise 6.5 Dynamic programming marathon (1 point).

6



1 3 2 1

3 2 1 1

A

B

Figure 1: Runner problem for a cost array of size 2× 5.

Imagine, a runner wants to run from A to B in Fig. 1. �ere are two lanes available. One is represented
by the �rst row and the other by the second row. On some sections, the �rst lane is faster than the
second lane, and vice versa. �e runner can change lanes at any time, but this costs 1 minute every
time. In this exercise, you are supposed to provide a dynamic programming algorithm that computes
the optimal track.

Formally, the problem is de�ned in terms of a cost array c ∈ N2×n. In Fig. 1 n = 5. Now, the runner
starts at position (1, 1) and wants to run to (2, n). Running along a lane from �eld (i, j) to the �eld
(i, j + 1) requires ci,j+1 minutes. Changing lanes from �eld (1, j) to (2, j) requires 1 + c2,j minutes,
and from �eld (2, j) to (1, j) requires 1 + c1,j minutes.

Provide an algorithm using dynamic programming that computes the optimal track from A to B. Your
algorithm should compute the optimal sequence (1, 1), (i1, j1), . . . , (ik, jk), (2, n) and its cost (= the
time required by the runner to run the sequence).

Solution:

Dimensions of the DP table:

�e DP table is linear, its size is 2× n.

De�nition of the DP table:

DP [i, j] contains the smallest cost for reaching the �eld (i, j) without running backwards.

Calculation of an entry:

Initialize DP [1, 1] = 0, DP [2, 1] = 1 + c2,1.

�e entries with j > 1 are computed by

DP [1, j] = min(DP [1, j − 1] + c1,j , DP [2, j − 1] + c2,j + c1,j + 1)

and
DP [2, j] = min(DP [2, j − 1] + c2,j , DP [1, j − 1] + c1,j + c2,j + 1).

�is is a correct recursion, since to reach (1, j) the runner must either pass through (1, j−1) or through
(2, j − 1), and likewise for (2, j).

Calculation order: We compute the entries column by column from le� to right.

Reading the solution: �e cost of the optimal track equal to the entry DP [2, n].

We obtain an optimal track by backtracking. �at is, we start at �eld (2, n) and we check whether we
got there with or without swapping the lane: If we got there without swapping the lane, the equality
DP [2, n] = DP [2, n − 1] + c2,n must hold and we add (2, n − 1) to our optimal track and proceed
by checking how we got to (2, n − 1). If we got there with a lane swap, the equality DP [2, n] =
DP [1, n − 1] + c1,n + c2,n + 1 must hold and we add (1, n) and (1, n − 1) to our optimal track and

7



proceed by checking how we got to (1, n − 1). We continue like this until we reach one of the �elds
(1, 1) or (2, 1). If we reach (2, 1) we add (1, 1) and are done.

Running time: Each entry can be computed in time Θ(1), so the running time for the computation
of the table is Θ(n). Reading the solution requires Θ(1). Our backtracking is also Θ(n), as we have to
check exactly n− 1 times from which �eld we came from. �us, our solution requires Θ(n) time.

8


